

Special Interest Group in

Security and Information Integrity (SIG^2)
http://www.security.org.sg

SIG^2 G-TEC Secure Code Study Research Paper

Defeating Kernel Native API Hookers by
Direct Service Dispatch Table Restoration
Author: Chew Keong TAN (chewkeong@security.org.sg)

8 July 2004 (Updated 3 October 2004)

 Introduction

Win32 Kernel Rootkits modify the behaviour of the system by Kernel Native API hooking.
This technique is typically implemented by modifying the entries within the kernel's System
Service Dispatch Table. Such modification ensures that a hook function installed by the
rootkit is called prior to the original native API. The hook function usually calls the original
native API and modifies the output before returning the results to the user-space program.
This technique allows kernel rootkits to hide files, processes, and prevent termination of
malicious processes.

This paper gives a short introduction to the technique of Kernel Native API hooking, and
proposes a technique for defeating kernel rootkits that hook native APIs by System Service
Dispatch Table modification. The proposed technique restores the System Service Dispatch
Table directly from user-space and do not require a kernel driver to be loaded.

 Kernel Native API Hooking by System Service Dispatch Table Modification

In Windows, user-space applications request for system services by calling APIs that are
exported by various DLLs. For example, to write data to an open file, pipe or device, the
WriteFile API that is exported by kernel32.dll is usually used. Within kernel32.dll, the
implementation of WriteFile API in turn calls the ZwWriteFile native API that is exported by
ntdll.dll. The work done by ZwWriteFile is actually performed in kernel-space. Hence, the
implementation of ZwWriteFile in ntdll.dll contains only minimal code to transit into kernel-
space using interrupt 0x2E. The disassembly of ZwWriteFile on Win2K is shown below.

1- MOV EAX, 0ED
2- LEA EDX, DWORD PTR SS:[ESP+4]
3- INT 2E
4- RETN 24

The magic number 0xED in line 1 is the Service Number for ZwWriteFile in Win2K. It is
used as an index into the kernel's System Service Dispatch Table (SSDT) to locate the
address of the service function that implements the actual code for writing to files, pipes or
devices. The address of SSDT can be found within the Service Descriptor Table (SDT).

“IT Security…the Gathering. By enthusiasts for enthusiasts”

mailto:chewkeong@security.org.sg

Special Interest Group in

Security and Information Integrity (SIG^2)
http://www.security.org.sg

The SDT can be referenced using the KeServiceDescriptorTable symbol, which is exported
by ntoskrnl.exe. It is a structure with the following definition.

typedef struct ServiceDescriptorTable {
 SDE ServiceDescriptor[4];
} SDT;

typedef struct ServiceDescriptorEntry {
 PDWORD KiServiceTable;
 PDWORD CounterTableBase;
 DWORD ServiceLimit;
 PBYTE ArgumentTable;
} SDE;

The first member of the structure, SDT.ServiceDescriptor[0].KiServiceTable, contains a
pointer to the SSDT of the system services implemented by ntoskrnl.exe. As mentioned
earlier, the SSDT contains an array of function pointers to the service functions that handle
native API calls. The ServiceLimit member gives the number of entries in the SSDT.

The DWORD value at KiServiceTable[0xED] is a function pointer to NtWriteFile, which
contains the actual code to write to files, pipes or devices. Hence, to modify the behaviour of
the user-space WriteFile API, one simply needs to write a hook (replacement) function, load
it into kernel-space as a driver, and modify KiServiceTable[0xED] to point to the hook
function. The hook function needs to keep a copy of the original function pointer (original
value of KiServiceTable[0xED]), so that the original function can be called to perform its
intended task.

The following screen dump from WinDbg shows the contents of KeServiceDescriptorTable
and KeServiceDescriptorTable.KiServiceTable.

kd> d KeServiceDescriptorTable
8046dfa0 b8 42 47 80 00 00 00 00-f8 00 00 00 9c 46 47 80 .BG..........FG.

Number of Entries in
KiServiceTable

Address of KiServiceTable

Dump of KeServiceDescriptorTable on Win2K

“IT Security…the Gathering. By enthusiasts for enthusiasts”

Special Interest Group in

Security and Information Integrity (SIG^2)
http://www.security.org.sg

kd> d 804742b8
804742b8 52 dd 49 80 c1 f6 4a 80-3a 04 4b 80 b8 d5 50 80 R.I...J.:.K...P.

NtAcceptConnectPort

NtAccessCheck

NtAccessCheckAndAuditAlarm

804742c8 70 04 4b 80 a2 ce 45 80-be f7 50 80 fe f7 50 80 p.K...E...P...P.
804742d8 38 4a 49 80 f2 a9 50 80-d8 de 4a 80 2d d8 4f 80 8JI...P...J.-.O.

Dump of KeServiceDescriptorTable.KiServiceTable on Win2K

The following examples illustrate how Kernel Native API hooking can be used to modify the
behaviour of certain APIs.

Example One - Process Hiding by Hooking ZwQuerySystemInformation

User-space programs can use the APIs exported by the ToolHelp DLL to obtain a list of all
running processes. The APIs in turn calls the ZwQuerySystemInformation native API
exported by ntdll.dll to obtain the list of running processes by specifying
(SystemProcessesAndThreadsInformation) as its first parameter. To hide processes, a
Win2K kernel-space rootkit, which is loaded as a driver, can modify the function pointer at
KiServiceTable[0x97] (ZwQuerySystemInformation) to redirect the call to a hook function.

The hook function first calls the original ZwQuerySystemInformation API to obtain an array
containing information of all running process. The returned array is then modified to remove
the entry containing the process to be hidden. Finally, the modified result is returned to the
user-space program. This effectively prevents the user-space program from "seeing" the
hidden process.

Example Two - Driver/Module Hiding by Hooking ZwQuerySystemInformation

User-space programs can obtain a list of all loaded drivers using the
ZwQuerySystemInformation native API, specifying SystemModuleInformation as its first
parameter. As mentioned earlier, ZwQuerySystemInformation is exported by ntdll.dll and
can be called directly by user-space programs. In kernel-space, the
ZwQuerySystemInformation native API obtains the list of loaded drivers by traversing the
PsLoadedModuleList.

A Win2K kernel-space rootkit can manipulate the results returned by
ZwQuerySystemInformation by modifying KiServiceTable[0x97]
(ZwQuerySystemInformation) to point to a hook function. The hook function will first call
the original ZwQuerySystemInformation to get an array of all loaded drivers. The driver to be
hidden (i.e. the rootkit) is then removed from the array. This manipulated array is returned to
the user-space program.

Example Three – File Hiding by Hooking ZwQueryDirectoryFile

“IT Security…the Gathering. By enthusiasts for enthusiasts”

Special Interest Group in

Security and Information Integrity (SIG^2)
http://www.security.org.sg

User-space programs use the FindFirstFile and FindNextFile APIs exported by kernel32.dll to
obtain a listing of all files in a directory. These APIs ultimately calls the
ZwQueryDirectoryFile native API to retrieve the required file listing. A kernel-space rootkit
can manipulate the output of ZwQueryDirectoryFile to remove any entries containing the file
to be hidden before returning the results to the user-space program.

 Restoring the System Service Dispatch Table

From the above examples, it should be obvious that if we could restore the System Service
Dispatch Table to its original state, we would be able to disable any kernel rootkits that
modifies system behaviour by hooking entries within the System Service Dispatch Table.
The following sections describe in detail how this could be done. A proof-of-concept (POC)
rootkit-defense tool, SDTrestore, was developed to illustrate the techniques described in this
paper. This POC tool can be downloaded from the following URL.

http://www.security.org.sg/code/sdtrestore.html

 Modifying the System Service Dispatch Table from User-Space

The System Service Dispatch Table (SSDT) exists in kernel-space and normally, to modify
entries in the SSDT, the rootkit must load itself into the running kernel as a driver. However,
it is possible for a user-space program to modify the SSDT entries by writing directly to
kernel memory using \device\physicalmemory.

Mark Russinovich from Sysinternals first used \device\physicalmemory in his Physmem tool
to allow the viewing of physical memory [3]. An excellent article that describes in detail
how to read and write to kernel memory using \device\physicalmemory can be found at [2].
An interesting code that shows how to hide process by direct manipulation of kernel memory
via \device\physicalmemory can be found at [4].

The following sequence of steps describes how a user-space program that runs with
Administrator privilege can gain read/write access to kernel memory via
\device\physicalmemory.

1. Use NtOpenSection native API (exported by ntdll.dll) with SECTION_MAP_READ
| SECTION_MAP_WRITE access flags to get a handle to \device\physicalmemory.
This will usually fail since the Administrator does not have SECTION_MAP_WRITE
access rights to \device\physicalmemory.

2. Use NtOpenSection native API with READ_CONTROL | WRITE_DAC access flag

to get a handle to \device\physicalmemory. This allows a new DACL to be added to
the \device\physicalmemory object.

3. Add a DACL to \device\physicalmemory, granting SECTION_MAP_WRITE access

to the Administrator account.

“IT Security…the Gathering. By enthusiasts for enthusiasts”

http://www.security.org.sg/code/sdtrestore.html

Special Interest Group in

Security and Information Integrity (SIG^2)
http://www.security.org.sg

4. Try to get a handle to \device\physicalmemory again using NtOpenSection native API
with SECTION_MAP_READ | SECTION_MAP_WRITE access flags.

After performing the above sequence of steps, the user-space program would have
successfully obtained a handle to \device\physicalmemory. In order to write to physical
memory, the program must first map the physical memory page into its virtual address space.
This can be done using the NtMapViewOfSection native API as shown below.

ntStatus = _NtMapViewOfSection(

hPhyMem, // Handle to \device\physicalmemory
(HANDLE)-1,
virtualAddr, // OUT – Virtual memory where the physical memory

 is mapped to.
0,
*length,
&viewBase, // IN/OUT – Physical memory address to map in

length, // IN/OUT – Size of the mapped physical memory
ViewShare,
0,
PAGE_READWRITE // Map for READ/WRITE access
);

After mapping the physical memory pages into its virtual memory space, a user-space
program can then read and write to them like any allocated memory. The output parameter
virtualAddr, gives the virtual memory address where the physical memory pages are mapped
to.

 Locating the Memory Address of the System Service Dispatch Table

In order for a user-space program to modify the System Service Dispatch Table entries, it
must first determine its physical memory address and map the page into its virtual memory
space. The address of the SSDT can be found in the KiServiceTable member of the
KeServiceDescriptorTable structure. This means that we must first locate
KeServiceDescriptorTable before we can get the address of the SSDT. However, the
memory address of KeServiceDescriptorTable differs across the different kernel Service Pack
versions. Despite this, it is still possible for a user-space program to reliably determine the
address of KeServiceDescriptorTable since this symbol is exported by ntoskrnl.exe. To
obtain this address, a user-space program first loads ntoskrnl.exe into memory with proper
memory alignment. The offset address of KeServiceDescriptorTable is then determined by
searching for its symbol in the export table of ntoskrnl.exe.

The offset address of KeServiceDescriptorTable is then converted to physical memory
address and the corresponding physical memory page is mapped into the virtual memory
space of the user-space program. To convert the offset address of KeServiceDescriptorTable
to physical memory address, we must first determine the kernel's base-address in protected-

“IT Security…the Gathering. By enthusiasts for enthusiasts”

Special Interest Group in

Security and Information Integrity (SIG^2)
http://www.security.org.sg

mode virtual memory. This is easily done by calling ZwQuerySystemInformation with
SystemModuleInformation as its first parameter. With the kernel base-address, the physical
memory address containing KeServiceDescriptorTable can be calculated as follows.

PhyMemAddrKeServiceDescriptorTable =

KernelVirtualBaseAddr + OffsetAddrKeServiceDescriptorTable – 0x80000000

In this case, we assume that protected-mode virtual memory starts at 0x80000000.

After mapping the physical memory page containing KeServiceDescriptorTable (using
\device\physicalmemory), we can determine the address of the System Service Dispatch
Table by reading its first structure element, ServiceDescriptor[0].KiServiceTable. The
address that was read must be converted to physical memory address before it can be used to
map the page containing the System Service Dispatch Table. This address is easily
calculated as follows, assuming that protected-mode virtual memory starts at 0x80000000.

PhyMemAddrServiceTable = VirtualMemAddrServiceTable – 0x80000000

The virtual address of KiServiceTable is also used to locate the original copy of System
Service Dispatch Table within ntoskrnl.exe. The offset location of the original SSDT in the
disk image of ntoskrnl.exe is easily calculated as follows.

OffsetAddrServiceTable = VirtualMemAddrServiceTable – KernelVirtualBaseAddr

Shortly after the release of our SDTrestore tool, 90210 suggested on rookit.com an improved
technique of locating KiServiceTable [10]. This technique is based on the observation that
KeServiceDescriptorTable is initialized in the KiInitSystem function with the following
instruction.

mov ds:KeServiceDescriptorTable, offset KiServiceTable

It is possible to locate this instruction within ntoskrnl.exe by scanning its relocation table for
references to instruction that corresponds to the form "mov KeServiceDescriptorTable,
imm32". Using the relocation table to assist in the scanning is more efficient and reliable
than scanning the entire code section of ntoskrnl.exe for the above instruction. Once this
instruction is located, the offset address of KiServiceTable can then be determined.

 Restoring Modified Entries in the System Service Dispatch Table

After the physical memory page containing the running kernel's System Service Dispatch
Table was mapped, a loop will compare all entries of the running kernel's SSDT with the
original SSDT stored within the disk image of ntoskrnl.exe. Each entry within the running

“IT Security…the Gathering. By enthusiasts for enthusiasts”

Special Interest Group in

Security and Information Integrity (SIG^2)
http://www.security.org.sg

kernel's SSDT is actually a function pointer with absolute virtual address. This must be
converted to offset address before it can be compared against its corresponding entry from the
original System Service Dispatch Table. The conversion is done as follows.

OffsetAddrOfFuncPtr = VirtualMemAbsAddrOfFuncPtr – KernelVirtualBaseAddr

Any discrepancies will indicate that the particular native API has been hooked, and any
hooked SSDT entries can be restored using the original values obtained from the disk image
(ntoskrnl.exe). Prior to restoration, the original values obtained from the disk image must
first be converted from offset address to absolute virtual address.

 Disabling He4Hook's Kernel Native API Hooks by SSDT Restoration

He4Hook is a kernel rootkit that uses Kernel Native API hooking as one of the ways to hide
and protect files/directories. Using our SDTrestore rootkit-defense tool, we found that
He4Hook hooks the following native API when its file-system hooking feature is enabled
using the –hk:1 option.

C:\>he4hookcontrol -hk:1

He4HookControl v2.03 - control utility for He4HookInv
Copyright (C) 2000 He4 developers team
He4Dev@hotmail.com

He4HooInv device installed -
 Version: 20001005
 Base: 8121D000
File system – hooked

C:\>sdtrestore
SDTrestore Version 0.1 Proof-of-Concept by SIG^2 G-TEC (www.security.org.sg)

KeServiceDescriptorTable 8046DFA0
KeServiceDecriptorTable.ServiceTable 804742B8
KeServiceDescriptorTable.ServiceLimit 248

ZwCreateFile 20 --[hooked by unknown at 81222476]--
ZwOpenFile 64 --[hooked by unknown at 812224A8]--
ZwQueryDirectoryFile 7D --[hooked by unknown at 812224D2]--

Number of Service Table entries hooked = 3

WARNING: THIS IS EXPERIMENTAL CODE. FIXING THE SDT MAY HAVE GRAVE
CONSEQUENCES, SUCH AS SYSTEM CRASH, DATA LOSS OR SYSTEM CORRUPTION.
PROCEED AT YOUR OWN RISK. YOU HAVE BEEN WARNED.

Fix SDT Entries (Y/N)? :

ZwQueryDirectoryFile was hooked by He4Hook to hide files and directories from directory
listings. Hooking ZwCreateFile and ZwOpenFile allows He4Hook to restrict the type of
assess on protected files and directories. Using SDTrestore, we were able to restore the
SSDT to its original state. Restoration of the System Service Dispatch Table effectively
disables the file and directory protection feature of He4Hook when it is used with the –hk:1
option. This is illustrated by the screen dump below.

“IT Security…the Gathering. By enthusiasts for enthusiasts”

Special Interest Group in

Security and Information Integrity (SIG^2)
http://www.security.org.sg

C:\>dir se*
 Volume in drive C has no label.
 Volume Serial Number is BC03-1AEF

 Directory of C:\

06/29/2004 10:15p <DIR> secret
 0 File(s) 0 bytes
 1 Dir(s) 3,151,261,696 bytes free

C:\>he4hookcontrol -a:c:\secret -c:R

He4HookControl v2.03 - control utility for He4HookInv
Copyright (C) 2000 He4 developers team
He4Dev@hotmail.com

He4HooInv device installed -
 Version: 20001005
 Base: 8121D000

Protected files list:
c:\secret (R)

C:\>dir se*
 Volume in drive C has no label.
 Volume Serial Number is BC03-1AEF

 Directory of C:\

File Not Found

C:\>sdtrestore
SDTrestore Version 0.1 Proof-of-Concept by SIG^2 G-TEC (www.security.org.sg)

KeServiceDescriptorTable 8046DFA0
KeServiceDecriptorTable.ServiceTable 804742B8
KeServiceDescriptorTable.ServiceLimit 248

ZwCreateFile 20 --[hooked by unknown at 81222476]--
ZwOpenFile 64 --[hooked by unknown at 812224A8]--
ZwQueryDirectoryFile 7D --[hooked by unknown at 812224D2]--

Number of Service Table entries hooked = 3

WARNING: THIS IS EXPERIMENTAL CODE. FIXING THE SDT MAY HAVE GRAVE
CONSEQUENCES, SUCH AS SYSTEM CRASH, DATA LOSS OR SYSTEM CORRUPTION.
PROCEED AT YOUR OWN RISK. YOU HAVE BEEN WARNED.

Fix SDT Entries (Y/N)? : y

[+] Patched SDT entry 20 to 80497EF9
[+] Patched SDT entry 64 to 80498755
[+] Patched SDT entry 7D to 80498541

C:\>dir se*
 Volume in drive C has no label.
 Volume Serial Number is BC03-1AEF

 Directory of C:\

06/29/2004 10:15p <DIR> secret
 0 File(s) 0 bytes
 1 Dir(s) 3,151,261,696 bytes free

“IT Security…the Gathering. By enthusiasts for enthusiasts”

Special Interest Group in

Security and Information Integrity (SIG^2)
http://www.security.org.sg

 Security Tools that use Kernel Native API Hooking

The technique of Kernel Native API hooking by System Service Dispatch Table manipulation
is not used solely by rootkits. Using our KProcCheck tool [5], we found that several security
tools also use this technique for a variety of purposes. The following are some of the security
tools that use Kernel Native API hooking.

• DiamondCS Process Guard (v2.000)
• Kerio Personal Firewall 4 (v4.0.16)
• Sebek (v2.1.5)

DiamondCSTM Process Guard v2.000

Process Guard is a Win32 security system that protects both system and security processes
(as well as user-defined processes) from attacks by other processes, services, drivers, and
other forms of executing code on a system. It can protect a process against termination,
suspension and prevents loading of malicious kernel drivers.

Using KProcCheck, we found that Process Guard works by hooking the following native
APIs.

KProcCheck Version 0.1 Proof-of-Concept by SIG^2 (www.security.org.sg)

Checks SDT for Hooked Native APIs

ZwCreateFile 20 \??\C:\WINNT\System32\drivers\procguard.sys [F7392D8A]
ZwCreateKey 23 \??\C:\WINNT\System32\drivers\procguard.sys [F7391F98]
ZwCreateThread 2E \??\C:\WINNT\System32\drivers\procguard.sys [F73924FC]
ZwOpenFile 64 \??\C:\WINNT\System32\drivers\procguard.sys [F7392C62]
ZwOpenKey 67 \??\C:\WINNT\System32\drivers\procguard.sys [F7391F64]
ZwOpenProcess 6A \??\C:\WINNT\System32\drivers\procguard.sys [F739289E]
ZwOpenThread 6F \??\C:\WINNT\System32\drivers\procguard.sys [F73926F8]
ZwRequestWaitReplyPort B0 \??\C:\WINNT\System32\drivers\procguard.sys [F7390AE6]
ZwSetValueKey D7 \??\C:\WINNT\System32\drivers\procguard.sys [F739224E]
ZwWriteVirtualMemory F0 \??\C:\WINNT\System32\drivers\procguard.sys [F7392A40]

Number of Service Table entries hooked = 10

Further testing reveals that by restoring the System Service Dispatch Table with our
SDTrestore rootkit-defense tool, we were able to disable the protection offered by Process
Guard. In other words, the processes that were being protected by Process Guard can now be
easily terminated using Windows Task Manager.

Kerio Personal Firewall 4 (v4.0.16)

Kerio Personal Firewall (KPF) is a state-of-the-art personal firewall that helps users restrict
how their computers exchange data with other computers on the Internet or local network.
KPF has a System Security feature that allows the user to control the execution of programs
on his system. KPF prevents malicious code from spawning processes on the user's system

“IT Security…the Gathering. By enthusiasts for enthusiasts”

Special Interest Group in

Security and Information Integrity (SIG^2)
http://www.security.org.sg

by prompting the user for action whenever an unknown/new or modified program is being
executed.

The System Security feature works by hooking the following native APIs.

KProcCheck Version 0.1 Proof-of-Concept by SIG^2 (www.security.org.sg)

Checks SDT for Hooked Native APIs

ZwCreateFile 20 \SystemRoot\system32\drivers\fwdrv.sys [BFBD3830]
ZwCreateProcess 29 \SystemRoot\system32\drivers\fwdrv.sys [BFBD3380]
ZwCreateThread 2E \SystemRoot\system32\drivers\fwdrv.sys [BFBD35E0]
ZwResumeThread B5 \SystemRoot\system32\drivers\fwdrv.sys [BFBD3630]

Number of Service Table entries hooked = 4

By restoring the System Service Dispatch Table with our SDTrestore rootkit-defense tool, we
were able to disable the System Security feature of KPF4. With the feature disabled, KPF4
will no longer prompt the user for actions when an unknown/new or modified program is
being executed.

Sebek (v2.1.5)

Sebek is a data capture tool designed to capture the attackers activities on a honeypot without
the attacker knowing it. It has two components. The first is a client that runs on the
honeypots, its purpose is to capture all of the attackers activities (keystrokes, file uploads,
passwords) then covertly send the data to the server. The second component is the server that
collects data from the honeypots.

Sebek prevents itself from being detected by hooking several native APIs in kernel-space.
Hooking is performed in the module SEBEK.sys by replacing entries within the SDT
ServiceTable. Sebek logs all console events by hooking ZwReadFile and ZwWriteFile.
Hooking these two native APIs allows Sebek to trap any read/write request to the console and
to send them to the logging server.

Using KProcCheck, we were able to determine that Sebek hooks the following native APIs.

“IT Security…the Gathering. By enthusiasts for enthusiasts”

Special Interest Group in

Security and Information Integrity (SIG^2)
http://www.security.org.sg

C:\>kproccheck -t
KProcCheck Version 0.1 Proof-of-Concept by SIG^2 (www.security.org.sg)

Checks SDT for Hooked Native APIs

ZwClose 18 SEBEK.sys [F729A092]
ZwCreateFile 20 SEBEK.sys [F729A98C]
ZwCreateKey 23 SEBEK.sys [F729AD10]
ZwEnumerateKey 3C SEBEK.sys [F729AE02]
ZwEnumerateValueKey 3D SEBEK.sys [F729AA50]
ZwOpenFile 64 SEBEK.sys [F729A8E6]
ZwOpenKey 67 SEBEK.sys [F729AD88]
ZwQueryDirectoryFile 7D SEBEK.sys [F729A4CC]
ZwQuerySystemInformation 97 SEBEK.sys [F729A5F0]
ZwReadFile A1 SEBEK.sys [F7299CF0]
ZwRequestWaitReplyPort B0 SEBEK.sys [F7299F14]
ZwSecureConnectPort B8 SEBEK.sys [F7299FE6]
ZwWriteFile ED SEBEK.sys [F7299D48]

Number of Service Table entries hooked = 13

By restoring the System Service Dispatch Table entries, we were able to disable the console
logging and anti-detection ability of Sebek.

 Conclusion

In this paper, we have given a short introduction to the technique of Kernel Native API
hooking by System Service Dispatch Table manipulation. This technique has been used by
kernel rootkits to modify the behaviour of the system. We have shown that it is possible for a
user-space program to disable such rootkits by restoring the SSDT to its original state by
writing directly to protected memory via \device\physicalmemory.

In our research, we also found that several security tools use similar hooking technique to
implement some of their security features. We have shown that it is possible for a user-space
program to disable their security features by restoring the SSDT. Hence, we recommended
that such security tools should take additional steps to prevent the restoration of the System
Service Dispatch Table entries, which could lead to the disabling of their security features.
For example, by preventing user-space programs from loading kernel drivers and blocking
write access to \device\physicalmemory.

 References

[1] Greg Hoglund, "NT Rootkit – The original and first public NT ROOTKIT".

http://www.rootkit.com

[2] crazylord, "Playing with Windows /dev/(k)mem", Phrack Volume 0x0b, Issue 0x3b,

Phile #0x10 of 0x12, Jul 2002.
http://www.phrack.org/phrack/59/p59-0x10.txt

[3] Mark Russinovich, "Physmem", Systems Internals.

http://www.sysinternals.com/files/physmem.zip

“IT Security…the Gathering. By enthusiasts for enthusiasts”

http://www.rootkit.com/
http://www.phrack.org/phrack/59/p59-0x10.txt
http://www.sysinternals.com/files/physmem.zip

Special Interest Group in

Security and Information Integrity (SIG^2)
http://www.security.org.sg

[4] 90210, "Process Hide", 29A#7 magazine, VX Heavens, Jan 2004.

http://vx.netlux.org/vx.php?id=ep12

[5] Tan Chew Keong, "Win2K Kernel Hidden Process/Module Checker 0.1 (Proof-Of-

Concept)", May 2004.
http://www.security.org.sg/code/kproccheck.html

[6] He4Hook, http://www.rootkit.com/vault/hoglund/He4Hook215b6.zip

[7] fuzen_op, "FU Rootkit", https://www.rootkit.com/vault/fuzen_op/FU_Rootkit.zip

[8] joanna, "klister", http://www.rootkit.com/vault/joanna/klister-0.4.zip

[9] firew0rker, "Kernel-mode backdoors for Windows NT", Phrack 62, Volume 0x0b, Issue

0x3e, Phile #0x06 of 0x10, July 2004.

[10] 90210, "A more stable way to locate real KiServiceTable",

http://www.rootkit.com/newsread.php?newsid=176

[11] David A. Soloman and Mark E. Russinovich, "Inside Microsoft Windows 2000 Third

Edition"

[12] Sven B. Schreiber, "Undocumented Windows 2000 Secrets, A Programmer's

Cookbook"

 Acknowledgement

The author would like to thank the SIG^2 G-TEC Lab
(http://www.security.org.sg/webdocs/g-tec.html) for supporting this research.

“IT Security…the Gathering. By enthusiasts for enthusiasts”

http://vx.netlux.org/vx.php?id=ep12
http://www.security.org.sg/code/kproccheck.html
http://www.rootkit.com/vault/hoglund/He4Hook215b6.zip
https://www.rootkit.com/vault/fuzen_op/FU_Rootkit.zip
http://www.rootkit.com/vault/joanna/klister-0.4.zip
http://www.rootkit.com/newsread.php?newsid=176
http://www.security.org.sg/webdocs/g-tec.html

	Defeating Kernel Native API Hookers by Direct Service Dispatch Table Restoration
	Kernel Native API Hooking by System Service Dispatch Table Modification
	
	
	Dump of KeServiceDescriptorTable on Win2K
	Dump of KeServiceDescriptorTable.KiServiceTable on Win2K

	Example One - Process Hiding by Hooking ZwQuerySystemInformation
	Example Two - Driver/Module Hiding by Hooking ZwQuerySystemInformation
	Example Three – File Hiding by Hooking ZwQueryDir
	Restoring the System Service Dispatch Table
	Modifying the System Service Dispatch Table from User-Space
	
	
	
	
	PAGE_READWRITE// Map for READ/WRITE access

	Locating the Memory Address of the System Service Dispatch Table
	In order for a user-space program to modify the System Service Dispatch Table entries, it must first determine its physical memory address and map the page into its virtual memory space. The address of the SSDT can be found in the KiServiceTable member
	The offset address of KeServiceDescriptorTable is then converted to physical memory address and the corresponding physical memory page is mapped into the virtual memory space of the user-space program. To convert the offset address of KeServiceDescripto
	After mapping the physical memory page containing KeServiceDescriptorTable (using \device\physicalmemory), we can determine the address of the System Service Dispatch Table by reading its first structure element, ServiceDescriptor[0].KiServiceTable.
	
	PhyMemAddrServiceTable = VirtualMemAddrServiceTab
	OffsetAddrServiceTable = VirtualMemAddrServiceTab

	Restoring Modified Entries in the System Service Dispatch Table
	
	OffsetAddrOfFuncPtr = VirtualMemAbsAddrOfFuncPtr �

	Disabling He4Hook's Kernel Native API Hooks by SSDT Restoration
	
	C:\>he4hookcontrol -hk:1
	C:\>sdtrestore
	C:\>dir se*
	C:\>he4hookcontrol -a:c:\secret -c:R
	C:\>dir se*
	C:\>sdtrestore
	C:\>dir se*

	Security Tools that use Kernel Native API Hooking
	DiamondCSTM Process Guard v2.000

	Further testing reveals that by restoring the System Service Dispatch Table with our SDTrestore rootkit-defense tool, we were able to disable the protection offered by Process Guard. In other words, the processes that were being protected by Process Gua
	Kerio Personal Firewall 4 (v4.0.16)
	By restoring the System Service Dispatch Table with our SDTrestore rootkit-defense tool, we were able to disable the System Security feature of KPF4. With the feature disabled, KPF4 will no longer prompt the user for actions when an unknown/new or modif
	Sebek (v2.1.5)
	C:\>kproccheck -t
	KProcCheck Version 0.1 Proof-of-Concept by SIG^2 (www.security.org.sg)
	Checks SDT for Hooked Native APIs
	ZwClose 18 SEBEK.sys [F729A092]
	ZwCreateFile 20 SEBEK.sys [F729A98C]
	ZwCreateKey 23 SEBEK.sys [F729AD10]
	ZwEnumerateKey 3C SEBEK.sys [F729AE02]
	ZwEnumerateValueKey 3D SEBEK.sys [F729AA50]
	ZwOpenFile 64 SEBEK.sys [F729A8E6]
	ZwOpenKey 67 SEBEK.sys [F729AD88]
	ZwQueryDirectoryFile 7D SEBEK.sys [F729A4CC]
	ZwQuerySystemInformation 97 SEBEK.sys [F729A5F0]
	ZwReadFile A1 SEBEK.sys [F7299CF0]
	ZwRequestWaitReplyPort B0 SEBEK.sys [F7299F14]
	ZwSecureConnectPort B8 SEBEK.sys [F7299FE6]
	ZwWriteFile ED SEBEK.sys [F7299D48]
	Number of Service Table entries hooked = 13
	Conclusion
	Acknowledgement

